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A note on the stochastic lattice-gas model 
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Abstract. It is proved, without imposing transiation invariance, that the only stationary 
states for the infinite two-dimensional stochastic lattice-gas (or binary alloy) model are the 
canonical Gibbs states, and that these dynamics describe a strong return to equilibrium. 

1. Introduction 

A number of very interesting dynamical processes such as the cooling of a gas and the 
consequent transition to a mixed gas-liquid system or to the metastable state of an 
undercooled gas could not, until now, be described by realistic models involving the 
intermolecular forces. A very strongly similar process is that of the quenching of a 
binary alloy. 

Simulated models have therefore been proposed in the hope that they might reveal, 
at least in a qualitative way, all physically important phenomena. In this note we study 
the model, originally introduced by Kawasaki (1966) and, later, by Spitzer (1970) in the 
mathematical literature. The model describes jumps of individual particles from one 
lattice site to a neighbouring site, with certain transition probabilities depending on the 
external temperature and the energy change resulting from the jump, in such a way that 
the detailed balance condition is satisfied. The interaction is a negative pair interaction, 
which need not be translation invariant. 

We shall study the stationary states and the return to equilibrium, described by the 
infinite two-dimensional model. We do not impose translation invariance of the 
stationary state U priori but nevertheless prove that a state is stationary if and only if it is 
a canonical Gibbs state. Our result therefore completes Georgii’s analysis (1979), which 
derived the same result imposing translation invariance. (In addition, Georgii proved 
the strict decrease of the specific free energy density). It should be remarked that both 
the present result and that of Georgii are based on a technique designed by Moulin- 
Ollagnier and Pinchon (1977) and by Holley and Stroock (1977), for similar studies of 
the Glauber model. Though partly an adaptation of those methods, some additional 
work is needed here to preclude the possibility of vanishing local probabilities. 

Secondly, we prove that any state which is absolutely continuous with respect to a 
stationary state, converges for large times and in the norm topology, to that stationary 
state, thus showing a strong ‘return’ to equilibrium. 

Conclusive rigorous results on the ‘approach’ to equilibrium have not yet been 
reached. Nevertheless, there now exists a vast literature on these matters, obtained via 
Monte-Carlo simulations. See for instance the stries of papers by Kalos et a1 (1978) 
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and various co-workers or Binder's book (1979). Most of these papers are concerned 
with the analysis of the structure function S ( k ,  t ) ,  or the growth of clusters. 

We shall formulate our results in terms of the lattice-gas language. As stressed in 
Holley and Stroock (1977) the proof of the result on the stationary states does not work 
in three dimensions. The result on the return to equilibrium is independent of 
dimension. 

We start by introducing the appropriate definitions and notation. 

2. The model 

2.1. The Configuration space 

As is usual in lattice-gas models we take as configuration space X the set (0, l}" ' with 
the product topology. A configuration x is an element of X, taking the value x(k) in the 
lattice site k .  

In general, A will denote a finite subset of Z ', and A its complement. Then X4, X i  
will represent the configuration spaces for A and A respectively. Given x E X ,  x 4  will 
denote its projection on XJl. Supposing a EX,, and b EX,,, with AI n A2 = d we write 
a,  b for the joint configuration in X,\luA,,,. The notation 11 will stand for the 
characteristic function of the event x,,  = a. 0 denotes the empty configuration, i the 
fully occupied configuration. 

When defining, in § 2.4, the dynamics, we need the following transformations of X: 
if x E X ;  k ,  1 E Z we denote by x k l  the configuration with 

x d m )  = x ( m )  if m # k ,  1 

= x ( 1 )  i f m = k  

= x ( k )  i f m = l  

and by x k ,  the configuration with 

x k h )  = x ( m )  i f m f k  

if m = k. = 1 - x ( k )  

Besides X, there is a family of reduced configuration spaces X"" (n ,  m E N  ) 
involved. X"" is the set of configurations with at most ( n  - 1) sites occupied or at most 
(m - 1) sites vacant. 

Let us write I x l = X k e Z z x ( k )  and I . i l = Z k e Z 2 ( 1 - x ( k ) ) .  As the maps x + / x /  and 
x - + I Z l  are lower semicontinuous, we obtain that X"" is compact for the relative 

Occasionally, when a E X,,, we shall use the notation la1 for the number X k e , ,  a ( k ) ,  

x" (n  E N ) will denote the characteristic function for the event 1x1 = n. 

topology. 

too. 

2.2. The algebra and its states 

A will be the algebra of all complex continuous functions on X, endowed with the 
supremum-norm topology. A,, then denotes the local algebra for the region A, D the 
algebra of functions depending on finitely many coordinates only. 
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Next we denote by R the set of states on A,  or, equivalently, the (regular Borel) 
probability measures on X .  Similarly is the set of probability measures on X””.  So 
and S ,  are the Dirac measures concentrated on the configurations 0 and i respectively. 

If then w E R, w,, will be its restriction to A,,, so that we shall write w A ( a )  for the 
probability of the event that x , = a,  ( a  E x,,). 

Again for w E R, we introduce measures w,i (x,,, * ) on Xi ,  for x,, E X,,, through the 
formula 

w ( f ) =  1 [w , i (x~ ;  dxn)f(x) .  
x \ E X \  

for all f in A.  
If E,, denotes the U-algebra of all events, invariant under permutations of sites in A, 

we write W ( X . ~  = a / E , j )  for the conditional probability of the event x,, = a,  with respect 
to the measure w and the u-algebra E,,. 

Due to the specific nature of the time evolution we now introduce canonical Gibbs 
states rather than Gibbs states. 

2.3. Canonical Gibbs states 

Let H,,, the local Hamiltonian, which is of the usual negative pair potential type be 

H,~(x) =I - J  E’ x(k)x( l ) - - J  C’ x(k)x(l) .  
k , / e  \ k e A , l d  i 

Using standard notation, the primed sum indicates summation over nearest neighbours 
with each pair counted once only. 

Definition (Georgii 1979). A state w in R is a canonical Gibbs state at inverse 
temperature 0, (and for the interaction H A )  iff for all finite h, all a EX,, 

w almost everywhere, and zero when la1 # I x , , ~ .  0 

The relation between these canonical Gibbs states and the more familiar Gibbs 
states is investigated by Georgii (1979). 

2.4. The stochastic lattice-gas dynamics 

Define, for any pair {k, I }  of lattice sites, the jump rate c ( k ,  1 ;  * ) 
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Theorem 4.2 in Liggett (1971) shows that the closure of 9, also denoted b y 9 ,  generates 
a dynamical, or Markov semigroup, on A.  Although only nearest-neighbour pairs are 
present in the definition of 9, more general c ( k ,  I ;  x )  will be needed in lemma 3.4. We 
think of c ( k ,  1 ;  x) as being the rate of transition from the configuration x to the 
configuration xk( .  It is determined solely by the values the configurations x and Xkl take 
in the sites k ,  1 and their nearest neighbours. 

3. Stationary states 

In this section we determine the set of stationary states for the semigroup constructed in 
B 2.4. Since the process preserves the particle number and since we do not impose 
translation invariance of the state, it might be expected to find stationary states amongst 
then'"," class, and different from convex combinations of So and Si. We show, however, 
that this is precluded. 

As remarked in the introduction, the result is proved using the techniques of Holley 
and Stroock (1977), the main difference being caused by the fact that in our model no 
creation or destruction of particles is allowed for. It was this creation and destruction 
which related w,,(a) to w,,(b) for la1 # 161, thus enabling one to exclude w,,(a) = 0 when 
w was stationary for the stochastic Ising ferromagnet. This is not possible a priori in the 
present model. It should be remarked that the proof can be adapted so as to incorporate 
non-translation invariant interactions too. 

3.1. Lemma 

If w is T, stationary, and for some A and a in XI, w,, ( a )  = 0, then there exist minimal n, 
m in N , such that w E 

Proof, If 1: is the characteristic function for the event x = a, it follows by invariance of 
w and by the assumption that w,,(a) = 0 

dw (x) F;c (k .  1 ;  x)[( l~)(xki)-( l : ) (x) l  

dw (X )  C ' c ( k ,  1 ;  X)(l:)(xk/)=0. 
= I k, l  

In particular, it follows for all { k ,  I }  c A, with k and 1, NN that w\(akl) = 0. Repeating the 
argument we find that w { x  11x \I = lal} = 0. We shall say that la 1 is a forbidden cardinal 
in h. 

By compatibility it follows that for all A with A c  A,  and all a' in X ,  with 
a:, = a :  wA(a ' )  = 0, and therefore, again using stationarity: w { x  1 la 1 s /xAJ s la1 + 
(IAI - IAI)} = 0. 

If on the other hand A =  A I  c A2, we have 

{x I la 1 s lxa,l zz la I + ( I &  - l4)l {x I la I Ix& s la I + (la*/ - l4)} 
so that 
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Therefore w E f$"'3 " ' - l a ' .  

n bk=) be the forbidden cardinals in A,. For o < P,  we have 
If {A,} is an increasing sequence of rectangles, tending to Z 2, let n y )  < nk2' < . . . < 

Let n = inf, {n;"} and m = inf,{lA,I - n a - ) } .  It follows that w E To prove 
uniqueness, let ( a ' ,  m ' )  be another couple determined along a sequence A,, with n '< n. 
Choose a' large enough so that n '= nr?. A configuration x,, with n' particles in A,, is 
forbidden. Choose a large enough so that A, covers A,,, and extend x,, to a 
configuration x, in A, by defining xAe\Ae, to be identically zero. Then as nb." 3 n > H', 
w,,= (x,) # 0. But this is a contradiction, for W,,(X,) SO~~,(X,,)  = 0. If n < n' we can 
reverse the argument and conclude n = n' .  A similar argument, counting vacancies, 
leads to m' = m. 0 

The rest of the analysis relies heavily on a treatment of the local specific free energy, 

If it is known that Vx,, E X,, wA(x*) > 0 we define the local specific free energy in the 
and the basic lemma 1.23 in Holley and Stroock (1977). 

state w,  denoting H A ( x A ,  0) by U,(X,,) 

f , ,(w) = c [U*(x*)+( l /P)  In w*(x*)lw*(x.,). 
X ; \ E X A  

If w is a state as in the lemma of 03.1, we shall consider the reduced specific free energy 

The next lemma adapts lemmas 1.10 and 1.16 in Holley and Stroock (1977) in that it 
takes into account particle transfer across the boundaries. We indicate the main steps 
only. 

3.2. Lemma 

If w is T, stationary, and for all A, all a EX,,: w A ( a )  > 0, then there exists a finite K,  
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volume independent, such that 

k E A.1 E A 

Here aA denotes the set of couples {k, I }  in A with k or 1 interacting with 

Proof. As in step (3.47) in Georgii (1979) we may write, under the assumption 
w.,(a) > 0 €or all a in X,,: 

By a change of variables a k /  a ,  this equals 

+ 1’ 1 [ u A ( a A \ { k } b ) -  u.,(a) 
k a A , / s , t  a e X A  b=0,1 

+ (1/p) In (w*(a*~k,b) /wl i (a) ) l r , ,”{ l~(k ,  I ;  ab) .  

In the last sum, we may restrict the b-summation to b different from a (k ) .  Hence we 
obtain, similarly to lemma 1.10 in Holley and Stroock (1977): 
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+t  C' C [f*k 1 ;  a ) - F * d k ,  1 ;  4 1  

x [ v A ( ~ ,  a ) + ( l / ~ )  In ( f A r ( k ,  1 ;  a ) / w A ( a ) )  

k E A , l e / i  a c X ,  

- ( I / @ )  In ( F A l ( k ,  1 ;  ak)/wA(ak))l. 

Next, it is easily checked that, when. {k, I }  is a pair of nearest neighbours in A, not 
interacting with sites in A, the terms in the second sum vanish. Furthermore, a finite K, 
A independent, may be found, bounding the remaining terms 

lV,\(k, 1 ;  a ) + ( l / P )  In [ r A ( k ,  1 ;  a ) / w ~ ( a ) I - ( l / @ )  In [ w k ,  1 ;  ak)/w~(akl)Il 

'and the corresponding terms in the last summation. Finally, we obtain by invariance of 
w,  the required estimation. Once again see Holley and Stroock (1977) for the 
details. 0 

In a completely analogous manner we obtain the corresponding result for stationary 
states in a".". 

3.3. Lemma 

If w in fl".'" is stationary for TI, then there exists a finite K ' ,  volume independent such 
that an estimation as in lemma 3.2. holds, with all summations restricted to a in 
X?". 0 

Proof. Due to inequality (1) or its counterpart of lemma 3.3, we can apply lemma 1.23 
in Holley and Stroock (1977) and deduce for all A, all a in XA (or X?") all {k, I }  nearest 
neighbours in A that T A ( k ,  1 ;  a )  = r, ,(k,  1 ;  akl). 
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By the density of the characteristic functions 1 i, the result follows for arbitraryf. By 
a transitivity argument the result is true for all k and 1. U 

At this point it should perhaps be remarked that we are not allowed to appeal to the 
result of theorem 2.14 Georgii (1979) as some w A ( a )  might vanish. To circumvent the 
difficulty, let us first show that it is sufficient to determine the extremal stationary states. 

3.5. Lemma 

The set of TI-stationary states in a Choquet simplex. 

Proof. Let p be €9, i.e. the T, stationary self-adjoint continuous linear functionals on 
A. Write p = p i  - p 2 ,  with pi positive linear functionals such that llpll= llpl~l + /lp21/. Then 
~ITIPI - T d  = /ITd = IklI = b l l / + l b z i ~  = IITfpl//+llTfp2/1. Hence Tfpl and TIp2 are 
orthogonal, and by uniqueness of the Jordan decomposition: T,pi = p i  and TIP2 = p 2 .  
Therefore T, ( lp l )  = lpl, and 9 is a lattice with the w* compact convex set of stationary 
states as a basis. c? 

3.6. Proposition 

If w is an extremal Tf-stationary state, then w is an extremal canonical Gibbs state. 

Proof. Any L" function g for which g ( x k l ) = g ( x )  for all k and 1 in Z 2 ,  is w almost 
everywhere constant, for if not, the functional w ( g  ) is stationary by lemma 3.4. and 
thus w is not extremal stationary. 

Hence w { x l  1x1 = fa and I f 1  = +CO} is 0 or 1. In the former case it follows, again by 
extremality and the fact that the events { X I  1x1 = n } ,  {xi 1.f = m }  are permutation 
invariant, that there exists an no or mo such that w { x l  1x1 = no} = 1 or w { x i  121 = mol = 1. 
It then follows from lemma 3.4, assuming the first situation prevails with no > 0: 

But by the martingale convergence theorem, and extremal stationarity of w ,  it follows 
for all A:  

w { s i w A ( a )  = lim, w ( x a  = a/E\) for all a EXA.} = 1. 
\ f E  

Choose la 1 = no, then for A c A,  and o the empty configuration on ] l \ A :  

= .\;z lim, w(x,\ = ao/E,,) 
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exp[ -pH,,(a 0, . )]x ""(a 0,  )no !  
w ( x . ,  = ao/E,,) s 

CY li$l(lAl- 1) . . . (IA - -no+  1) ' 

Hence for all A, all a E XA with / a  I = no, we have w A ( a )  = 0, which is a contradiction. A 
similar argument holds when @ { X I  I f  = mo} = 1. We therefore conclude that either 
w = So or Si, or w is a canonical Gibbs state (with an infinity of particles and vacant sites), 
following part 2 of proposition 2.19 of Georgii (1979). But since, on the contrary, any 
canonical Gibbs state is stationary, we conclude that w is an extrema1 canonical Gibbs 
state. [? 

4. Return to equilibrium 

We finally add a brief remark on  the return to equilibrium described by the dynamics. 
By this we mean that any state p ,  absolutely continuous with respect to a canonical 
Gibbs state w,  lim,,,T?p exists in the norm topology. As emphasised by Davies (1977) 
the norm condition discriminates real dissipation of local disturbances from their 
migration to infinity. 

The semigroup defined in 9: 2.4. may be extended to a self-adjoint contraction 
semigroup on L 2 ( X ,  dw) as in lemma 1.3 of Holley and Stroock (1976) for example. 
Then as T, is positivity preserving, it is extendable to an L p  contractive semigroup, 
following theorem X.55 in Reed and Simon (1975). In particular it is an L' strongly 
continuous semigroup, and by duality the semigroup restricted to L"(X, dw) is a 
dynamical semigroup in the sense that T, is (T(L", L ' )  continuous for all t, and that the 
map t + ~ , f  is c r ( ~ " ,  L')  continuous. 

The above statement on the return to equilibrium, and the fact that the limiting state 
of T : p  is p E, with E the unique T, invariant conditional expectation on the T, 
invariant functions in L"(X, dw), may then be seen to be consequences of different 
arguments. In  a direct way they follow from Rota's theorem (Rota 1962, Doob 1963), 
or theorem 4.2. in Frigerio (1978); indirectly one may first prove L2(X,dw) con- 
vergence as in Holley and Stroock (1976) and then proceed via density arguments. 

Of course the above result cannot describe the physically very interesting processes 
of cooling the gas from an equilibrium state at very high temperatures, to a gas-liquid 
system in equilibrium at a temperature below the critical one. More refined techniques 
should be used to (dis)prove the convergence of states, not absolutely continuous with 
respect to a given stationary state, under the semigroup, to that state. This convergence 
is generally called 'approach to equilibrium'. 
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